BCPST 951 2008/2009

TD - Dimension finie

Espaces vectoriels

Exercice 1

Soit E un espace vectoriel et soit x, y, z une famille libre de E. Montrer que la famille x + y, y + z, z + x est également libre.

Exercice 2

Prouver que l'ensemble:

$$E = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + 2y - z + t = x - y + 2z - 2t = 0\}$$

est un espace vectoriel. En déterminer une base, ainsi que la dimension.

Exercice 3

Les familles suivantes sont-elles génératrices de $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$?

- a) (1,-1,0); (2,-1,-3)
- b) (1,-1,0); (-2,2,0)
- c) (1,-1,0);(2,1,-3)
- d) (1,-1,0); (2,1,-3); (-1,0,1)
- e) (1,-1,0); (2,1,-3); (1,0,1)

Exercice 4

Calculer le rang de la famille de vecteurs de \mathbb{R}^4 suivante :

$$(2,1,4,3);(0,3,-1,2);(4,1,2,1);(8,6,9,9);(-6,-1,0,1)$$

Déterminer une base de l'espace vectoriel engendré par ces vecteurs.

Exercice 5

Dans $E = \mathbb{R}_2[x]$, le \mathbb{R} -espace vectoriel des fonctions polynômiales de degré inférieur ou égal à 2, on considère f vérifiant $|f(0)| \le 1$, $|f(1)| \le 1$ et $|f(-1)| \le 1$.

- a) Vérifier que la famille $\mathcal{B} = \left(\frac{1}{2}x(x+1), \frac{1}{2}x(x-1), 1-x^2\right)$ est une base de E et décomposer f dans \mathcal{B} .
 - b) En déduire que si $|x| \le 1$, alors $|f(x)| \le \frac{5}{4}$.

On pose $f(x) = ax^2 + bx + c$ et on prend g l'élément de E donné par $g(x) = cx^2 + bx + a$.

- c) Déterminer la base \mathcal{B}' de E telle que les coordonnées de g dans \mathcal{B}' soient les coordonnées de f dans \mathcal{B} .
 - d) En déduire que pour $|x| \le 1$, on a $|g(x)| \le 2$.(Ina 2006)

Exercice 6

On note E l'ensemble des applications de $\mathbb R$ dans $\mathbb R$ de classe $\mathcal C^2$ vérifiant :

$$\forall x \in \mathbb{R}, \ x^2 f''(x) - 4x f'(x) + 6f(x) = 0$$

- a) Vérifier que l'ensemble E est un espace vectoriel sur E.
- b) Déterminer les fonctions polynômiales sur $\mathbb R$ appartenant à l'espace vectoriel E.
- c) Soit f un élément de E, on définit une application g de \mathbb{R}^* dans \mathbb{R} par $g(x) = \frac{f(x)}{x^2}$. Montrer que g est de classe C^2 sur \mathbb{R}^* , et que g'' est nulle.
 - d) En déduire la dimension et une base de l'espace vectoriel E. (Ina 2006)

Systèmes linéaires

Exercice 7

Résoudre les systèmes suivants $(j = e^{\frac{2i\pi}{3}})$

1)
$$\begin{cases} 2x + y + z = -1 \\ x - y = -1 \\ 3x + y + 2z = -1 \end{cases}$$
2)
$$\begin{cases} x + y + z + t = 2 \\ 2x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
3)
$$\begin{cases} 2x + y + z = 3 \\ x - y + 3z = 8 \\ x + 2y - z = -3 \\ x + y + 2z = -1 \end{cases}$$
4)
$$\begin{cases} x + y + z + t = 2 \\ 2x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
4)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
5)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
6)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
6)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
7)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
8)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
9)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
1)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
1)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
2)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
3)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
4)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
6)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$
6)
$$\begin{cases} x + y + z + t = 1 \\ x + 2y + 2z = 3 \end{cases}$$

Exercice 8

Discuter et résoudre le système suivant en fonction des paramètres a et b:

$$\begin{cases} x + y - z + 2t = 1 \\ ax - 3y + z + t = 2 \\ 5x - 5y + z + 4t = b \end{cases}$$

Exercice 9

Discuter et résoudre sur $\mathbb C$ le système suivant (a est un paramètre):

$$\begin{cases} x - ay + a^2z = a \\ ax - a^2y + az = 1 \\ ax + y - a^3z = 1 \end{cases}$$

Exercice 10

Déterminer le noyau et l'image de la matrice suivante:

$$M = \begin{pmatrix} 1 & 1 & -1 & 0 & 1 \\ -1 & 0 & 2 & 0 & -2 \\ 2 & 2 & -2 & 2 & 3 \\ 1 & 3 & 1 & 2 & 0 \end{pmatrix}$$

2

Exercice 11

Soient a, b deux complexes. Discuter le rang de la matrice suivante :

$$\begin{pmatrix}
a+b & b & a \\
a & a+b & b \\
b & a & a+b
\end{pmatrix}$$

Applications linéaires

Exercice 12

Déterminer le noyau et l'image de l'application $f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ définie par f(P)(X) = 2P(X) - XP'(X). (G2E 2002)

Exercice 13

Soit e_1, e_2, e_3, e_4 une base de \mathbb{R}^4 . On définit une application linéaire f de \mathbb{R}^4 vers \mathbb{R}^3 par $f(e_1) = (1, -1, 2), f(e_2) = (-2, 5, 3), f(e_3) = (-7, 16, 7)$ et $f(e_4) = (-3, 6, 1)$. Déterminer le noyau et l'image de f.

Exercice 14

 $\mathbb{R}[X]$ est l'espace vectoriel des polynômes à coefficents réels, $\mathbb{R}_n[X]$ est l'espace vectoriel des polynômes à coefficents réels de degré inférieur ou égal à n $(n \in \mathbb{N})$.

On considère:

$$\begin{array}{cccc} f: & \mathbb{R}[X] & \to & \mathbb{R}[X] \\ & P & \mapsto & (4X+1)P(X) - (X-2)(X+1)P'(X) \end{array}$$

- a) Comparer le degré de f(P) et celui de P.
- b) En déduire qu'il existe $n \in \mathbb{N}$ unique tel que la restriction de f à $\mathbb{R}_n[X]$ est un endomorphisme de $\mathbb{R}_n[X]$. On note alors φ cette restriction.
- c) Déterminer $\ker \varphi$ et montrer que $(\varphi(1), \varphi(X), \varphi(X^2), \varphi(X^3))$ est une base de l'image de φ . (Ina 2004)

Exercice 15

E est un espace vectoriel de dimension 2n. f est un endomorphisme de E tel que $f \circ f = 0$. Soient u_1, u_2, \ldots, u_n tels que $(f(u_1), f(u_2), \ldots, f(u_n))$ soit libre.

- a) Montrer que $\dim(\operatorname{Im} f) \geq n$.
- b) Montrer que (u_1, u_2, \ldots, u_n) est libre.
- c) Montrer qur Ker f = Im f.
- d) Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Vect}(u_1, u_2, \dots, u_n)$. (Ina 2005)

Applications linéaires et matrices

Exercice 16

E est F sont deux espaces vectoriels rapportés respectivement aux bases (e_1, e_2, \ldots, e_p) et (f_1, f_2, \ldots, f_n) . u est l'application linéaire de E vers F dont la matrice dans les bases

précédentes est
$$M = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{pmatrix}$$
.

- a) Que valent n et p?
- b) Donner une base de ker(u) et de Im(u).
- c) Montrer qu'il existe une base de E et une base de F dans lesquelles la matrice de u

est
$$M' = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
. (Ina 2004)

Exercice 17

Soit E un espace vectoriel de dimension 3, et u un endomorphisme de E tel que $u^2 \neq 0$ et $u^3 = 0$.

- a) On suppose que dim ker u = 2. Montrer d'abord que ker $u = \ker u^2$ puis trouver une contradiction.
 - **b)** En déduire dim $\ker u$ et dim $\operatorname{Im} u$.
- c) Soit $a \notin \ker u^2$. Montrer que $(a, u(a), u^2(a))$ est une base de E et donner les matrices de u et u^2 dans cette base.(INA 2003)

Exercice 18

Soit E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} de classe \mathcal{C}^{∞} . On considère dans E les fonctions $f_1: x \mapsto \sin x$, $f_2: x \mapsto \cos x$, $f_3: x \mapsto x \sin x$ et $f_4: x \mapsto x \cos x$. On note $F = \text{Vect}(f_1, f_2, f_3, f_4)$ et $\begin{array}{c} u: F \to F \\ f \mapsto f' \end{array}$.

- a) Montrer que $\mathcal{B} = (f_1, f_2, f_3, f_4)$ est une base de F.
- b) Montrer que u est un endomorphisme de F et donner la matrice A de u dans la base \mathcal{B} .
 - c) Montrer que A est inversible et expliciter A^{-1} . (Ina 2004)

Exercice 19

Soit
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $K = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $L = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ et $A = \begin{pmatrix} 2 & -4 \\ -2 & 3 \end{pmatrix}$. On note F l'application qui à toute matrice M de $\mathcal{M}_2(\mathbb{R})$ associe $F(M) = AM - MA$.

- a) Justifier que I, J, K, L est une base de $\mathcal{M}_2(\mathbb{R})$.
- b) Prouver que F est un endomorphisme.
- c) Ecrire la matrice associée à F dans la base I, J, K, L.
- d) Déterminer le rang de F.

Bonus: pouvait-on prévoir que le rang de F serait ≤ 2 ? (Ina 2005)